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X-ray Diffraction from Close-Packed Structures with Stacking Faults. I I .  hhc Crystals 

BY SHRIKANT LELE 
Max-Planek-Institut f~r Metallforsehung, Stuttgart, Germany (BRD) 

(Received 28 February 1974; accepted 18 April 1974) 

The kinematical theory of X-ray diffraction by hhe (samarium-type) crystals with growth and deformation 
faults is developed. The intensity distribution in reciprocal space is derived as a function of five param- 
eters which represent three growth and two deformation fault probabilities. Only reflexions with 
H -  K¢ 3N, N an integer, are affected by faulting and exhibit generally changes in integrated intensity, 
profile peak shift, broadening and asymmetry. It is shown that nine independent combinations of the 
five fault probabilities can be evaluated from the measured profile characteristics. 
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Introduction 

Extensive work has been performed on the derivation 
of X-ray diffraction effects of faulting in close-packed 
structures with ranges of influence equal to 2 and 3 
(Warren, 1959; Anantharaman, Rama Rao & Lele, 
1972). The diffraction effects of growth and deforma- 
tion faults in hcc crystals were described in an earlier 
paper (Lele, 1974) while those in hhc crystals are con- 
sidered here. Both of these structures have a range of 
influence equal to 4. Gevers (1954) has given a general 
treatment for growth faults in crystals of this type. We 
shall extend this work by including deformation faults 
in our treatment as also by relating the fault probabili- 
ties directly to the experimentally observable diffrac- 
tion effects. 

The hhc structure, exhibited for example by sam- 
arium, can be considered as a layer structure produced 
by the regular stacking of close-packed layers in the 
sequence ABCBCACAB, A where the letters A, B and 
C denote the three possible positions of the close- 
packed layers and the comma marks the completion 
of the repeat period. The geometrical structure factors 
for different H, K, L are given in Table 1. The possible 
growth and deformation faults along with a different 
notation due to Nabarro (1967), virtual processes for 
their formation and stacking sequences containing the 
faults (indicated by vertical bar) are given in Table 2. 
The following calculations have been made under as- 
sumptions usual in this type of work (see, e.g., Prasad 
& Lele, 1971). 

Table 2. Stacking faults in hhc crystals 

Process of Stacking 
formation sequence 

Insertion of 
1 layer + glide 

Fault Notation 

Growth c 

h Twin 

hc Twin 

Deformation hhc Glide 

3c Glide 

c h h c  c h h c  
B A B C I A C A B  

h c h h  h c h h  
B C B C I B A B A  

h h c h  c h h c  
A B C B ] A B A C  

h h e h  e h h h  
A B C B ] A B A B  

c h h c  e e e h  
B A B C [ A B C B  

Diffraction from faulted crystals 

Following Warren (1959), the diffracted intensity is 
given by 

I(h3)=~u z ~ (exp (iqbm) ~ exp (2~rimh3/9) (1) 
m 

where 
~m = (2~z/3) ( H -  K)qm, (2) 

qm being a stochastic variate equal to 0, 1 or 2 respec- 
tively according as the m layer is A, B or C when the 
origin layer is A. Values of qm for B and C layers at the 
origin can be obtained by cyclic permutation. Further 

(exp (i05m))= CQ m (3) 

H - K  
3N 

3N+I 

Table 1. Structure factors for hhc crystals 

IFI 
9M 9M-T- 1 9M + 2 

9f 0 0 

0 

9MT-4 

0 

3f(1 +2 cos ~ - )  

Note: F=0 for H - K + L # 3 N  
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where 0 is a solution of the so-called characteristic 
equation and C can be obtained from the initial con- 
ditions. The characteristic equation for growth faults 
has been obtained by Gevers [1954, equation (12)] 
while that for deformation faults is derived in an Ap- 
pendix. Combining these two equations, we have fi- 
nally 

06 "a t- ~c~O 5 "4- (1  - -  0~ c - -  ~t~ - -  ~tw - -  3 ~ 3 c ) 0 3  q- 20~cO 2 
+ (1 - 2 ~  - 2 ~ a  - 2~h~  - -  6 ~ h h ~ - -  3~3~)  = 0 

for £s  ~1 (4) 

where c~:, is the probability of the occurrence of faults 
of type x (Table 2). For convenience, the relationship 
to Gevers' (1954) notation is given below 

~ ---> c~3 = ~4; ~ -+ (1 - ~ ) ;  ~h~ -+ ~2. 

Solutions of equation (4) may be expressed in the fol- 
lowing form 

~ = Z ~ e x p  ( - 2 z c i ) ( 9  +Xv) v=1,2,4,5,7 &8  (5) 

where Z~ and X~ are real and are given by 

Zv= 1 -  if- 1 - c o s - -  

O~c 4z~v O~hh c 
X~ = - ~  sin - i f -  + ~ sin - -  

v = 1,2,4,5,7 & 8. 

(X h O~hc 0~3c 

3 3 ~'~'~ 2 
2rcv Cqc . 2 ~ v  

- -  s l n  - -  

3 6z~ 3 

(6) 
The initial conditions, required for evaluation of the 
C,'s and found by direct evaluation from all possible 
stacking sequences of six layers, are given below 

<exp (i~0)) = 1 
(exp (iq~0) = -½ 

(exp (i~2))=(½) ( 1 -  2~  _ ~k _ ~h~ _ 2~z~) 
3 3 -3- (7) 

<exp (iq~3)) = -(12) (1 - ~ -  3~3~) 
( e x p  ( i ~ 4 )  > = (~;) (-- 2~c + el, + 2ahc + 6aat, c - 3 ~ 3 c )  

(exp (i~s)) = (~) (5~-4~.-2~h~-12~hhc + 9~3~)_ 

Substituting from equations (5), (6) and (7) in equa- 
tion (3) and solving the resultant set of six simultaneous 
equations for the Cv's, we have 

C1 = O- 1008 { 1 + 0.4089 (O~h - O~hc ) - -  0.2176c~n~,~ 
- 1'1573c%- i[0'09 (~ +~h~)-- 1'3514~hh~ 
+ 1"4067~Z¢]} 

Cz = 0"043 {1 - 1"4705 (~h-- 7h¢) -- 0"9598~h~ 
- -  O" 1938~3~ + i[0"318 (~h + ~h~) -- 2" 1 8 2 ~  
+ 1"4794~3~]} 

Ca = 0"3562 { 1 + 0"0616 ( ~ -  ~h~) + O" 1774~h~ 
+ 0"351 ~3~-- i[0"7466 (~a + ~h~) + 0"6457~hh~ 
--0"5767~Z~]}. (8) 

G = c l  
G=c;  
G=ct 

where the * denotes complex conjugation. Substituting 
from equations (3) and (5) in (1), we have on simplifica- 
tion 

I(h3)= ~z [Ca, ~ Z~ z' cos 2rcm (h93- 9 - t -  X1) 
m 

-C~, ~ Zt~ z' sin2zc [m[ (h3 ~--X~)] 

-C2, ~ Z~"' sin 2z~lm[ ( ~  - ~ - X 2 ) ]  

-C4, ~ Z~Z'sin2zc[m[ (~  -9-4--X4)1 

+C4,~,z~r"'sin2rclml(~--~+X4)] 
m 

+ C~, ~ Z[ z' sin 2nlml (~- -~-+ Xj.)] (9) 

where C,, and C~ are the real and imaginary parts of 
C,. and are given by 

cv,=(½) (c~+c:); c~,=(½3 (c~-c,*) 
v=1,2,4.  (10) 

Performing the summations in equation (9), we have 

1- Z~-2(C1,/C1,)ZI sin 2n(~-  - 9x-X1) 
1@3)= ~2C1,. 

1-Z~-2(C2dC2,)Zzsin 2rc(-~ -~-X2) 
+ ~2C2, 

1 +ZzZ-2Z2 cos 2~ (-~ - 2 - ) ( 2 )  

1- Z24- 2(C4JC4r) Z4 sin 27~(@ -~-X4) 
+ ~u2C4, 

l + Z~-2Z4 cos 2rc (-~ -{~-X4) 
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+ ~ff2 C4r  

+ ~u2C2~ 

+ ~'2C1, 

~ha s \ 
1 -  Z~ + 2(C4JC4~) Z4 sin 2re ~-~--~ + X4) 

1 \ ha  "7 
1-- 2 2  + 2(C2t/C2r ) Z 2 sin 2g l-A- ---ff+Xz/ 

\~:J / 

l + Z2z-2Z2 cos 2:rc (~- - ~ +  X2) 

1-Z~+2(CI,/CI,) Z, sin Dt (-~ - } + X , )  

l + Z ~ - 2 Z l  cos 2rc (~- -~+X~) . 

(11) 

Description of diffraction effects 

Reflexions with H - K = 3 N ,  L=9M, M and N inte- 
gers, remain sharp. For reflexions with H - K ¢ 3 N ,  the 
first to sixth terms on the right-hand side of equation 
(11) give rise to broadened peaks corresponding to 
L = 9 M + I ,  9M+2,  9M+4,  9M+5,  9M+7,  9 M + 8  
respectively. In general, all reflexions exhibit changes 
in integrated intensity, profile peak shift, profile broad- 
ening and profile asymmetry. These effects can be 
utilized for estimating fault probabilities. Quantitative 
expressions for these profile characteristics are given 
below. 

Profile integrated intensity 
The integrated intensities 7"1, 7"2 and T4 in reciprocal 

space for reflexions with L = 9 M +  1, 9M+ 2 and 9M+ 4 
respectively can be obtained by integrating separately 
the corresponding terms on the right-hand side of 
equation (11) with respect to ha. The fractional changes 
in the ratios R21 and R41 of the integrated intensities 
T2, T~ and T4, T~ respectively are given by 

AR21/R21 = - 1"8794 (c~h-O~hc) 
--0"7422 ~**~+0"9635 ea~ (12) 

ARat/R41 = - 0" 3473 (~h- ~ )  
+0-3950 ~%c+ 1.5083 c%. (13) 

By experimental measurement of the quantities AR2t / 
R21 and AR4~/R41, one obtains two different combina- 
tions of the fault probabilities. We designate such a 
combination by the term compound fault parameter. 

Profile peak shift 
Each term on the right-hand side of equation (11) 

gives rise to a peak when the argument of the cosine 
term in the denominator is a multiple of 2re. The 
changes in the profile peak positions due to faulting 
can thus be found and after conversion to 20 ° coor- 
dinates are given by 

3(20.,)7= + 
2701/~ ILId 2 

7172 C 2 

x tan 0 (1.1372 ~ + 2ehhc-- C%) 

for L = 9 M + I  (14) 

a (2o ' ) o  = + 
2701/3 ILld 2 

7~ 2 C 2 

x tan 0 (0.3949 a t -  2C~hhc + 0Ca~) 

for L = 9 M + 2  (15) 

3(20=)4°= + 
2701/~ ILld 2 

7~ 2 C 2 

x tan 0 ( -  0.7422 0c~ + 2e,hc- c%) 

for L = 9 M + 4 .  (16) 

Profile peak shift measurements thus lead to esti- 
mates of three more compound fault parameters. How- 
ever, only two of these are independent. 

Profile integral breadth 
The integral breadth is defined as the ratio of the 

profile integrated intensity and the profile maximum. 
Considering each of the terms in equation (1 l) sepa- 
rately and converting to 20 ° coordinates, we have 

(pA ° -  
270 ILId z 
zc c 2 

x tan 0 (1.6527 0~ + 2eh + 2eh~ + 6e~i,c + 3~3c) 

for L = 9 M +  1 (17) 

(fir)0= 270 ILl d2 
7~ C 2 

x tan 0 (3.8794 ec + 2eh + 2eh~ + 6c%~ + 3Cqc) 

f o r L = 9 M + 2  (18) 

(/~A 0 .  
270 ILId 2 

7~ C 2 

x tan 0 (0.4679 ~c + 20~, + 2c% + 6~hj,~ + 3~3c) 

for L = 9 M + 4 .  (19) 

Three additional compound fault parameters can, 
therefore, be obtained from measurements of (fls) °, 
(fls) ° and (ps) °. Again, however, only two of these are 
independent. 

Profile asymmetry 
A simple measure of profile asymmetry is the shift 

of the centroid of a profile from its peak position. Fol- 
lowing Cohen & Wagner (1962), we have from equa- 
tion (9) 
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A(20c_,,,)~= + - - - -  
360 In 2 

7~ 2 

x tan 0 [0.09 (ah+O~hc)-- 1"3514 a,h~+ 1"4067 C%] 

A(20~_.,)°= + _ _ .  

Table 3. Probability trees giving transition probabiBties 
and phase differences from one layer to the next 

( m - l )  
layer 

for L =  9 M +  1 (20) 
hh 

360 In 2 A - -  
7~ 2 

ch 
x tan 0 [ -0 .318 (~h+ah~)+2"182 C%~-- 1'4794 C%] ,4 

for L = 9 M + 2  (21) 

C 

A(20c_m) o = + ____360 In 2 A . . . . . .  
- -  g 2  

x tan 0 [0.7466 (~h + ~c) + 0.6457 ahhc-- 0"5767 ~3~] 

for L = 9 M +  4.  (22) 

Thus, measurement of asymmetry leads to estimates 
of three more compound fault parameters. 

Discussion 

Independent estimates of a total of nine compound 
fault parameters can be obtained from measurements 
of the profile characteristics mentioned above. Since 
there are only five fault probabilities, we have an over- 
determined set of equations and all five fault proba- 
bilities can be found in principle. In practice, all the 
data required may not be available with sufficient ac- 
curacy and further the profile broadening may include 
effects due to small domains and strains within the 
specimen. Methods for eliminating the latter effects 
are considered, for example, by Anantharaman, Rama 
Rao & Lele (1972). Analysis in any given situation 
would depend on the data available and the probable 
effects present in the sample and as such will not be 
considered here. 

The author is grateful to Professor E. Gebhardt for 
laboratory facilities and to the Alexander von Hum- 
boldt Foundation for the award of a fellowship. 

APPENDIX 

Characteristic equation for deformation faults 

We consider three types of layers to be present in the 
perfect hhc structure according as they continue the 
stacking in a ch, hh or c way. We further note that 
hhc faults can occur only after the first two types of 
layers while 3c faults can occur only after c-type layers 
(Table 2). The transition probabilities as also the phase 
differences from the  ( m - 1 )  to the m layer for the 
above three types are shown in Table 3. Let ~ rep- 
resent the phase difference for an m layer of the type 
y where y is one of ch, hh and c. 

m Phase 
Probabil i ty layer difference 

1 - ~hhc c 
B + q~o 

O~hh c C 
C --~o 

1 - O~nh~ hh 
B + (oo 

O~hh c hh 
C --~Oo 

1 - o¢a~ ch 
C -- (Oo 

O~3c ch 
B + q;o 

Then from Table 3, we have 

(exp (i~g,)) = {(1 --O~hhc)W + O~hhcW* } (exp ( i ~  h_ 1)) 
(A1) 

(exp ( i~h))  = {(1--O~hhc)W + O~h~W*} (exp ( i~ ,~  1)) 

(A2) 

(exp (i~,~))-- { (1 -  cq~)w* + ea~o)} (exp ( i ~ _ ~ ) )  

(A3) 
where 

co=exp (2ra/3) (H-K)=exp (i~oo) . (A4) 

Replacing m by ( m - 1 )  and ( m - 2 )  respectively in 
equations (A2) and (A3) and eliminating (exp ( i q ~ l ) )  
and (exp (iq~g~2)) from the resulting equations and 
equation (A1), we obtain 

(exp ( i~ , ) )  = {(1 - C~hh~)OO + a,,~cO)* }2 

x {(1--Cqc)W*+CqcW} (exp ( i~ ,_a ) ) .  (A5) 

Let the solution of this recurrence equation be of the 
form 

(exp ( i ~ g ) ) = C o ' .  (A6) 

Substituting from equation (A6) in (A5), we get 

o 3 -  {(1 - ~ ) o ~  + ~hcCO* }2 
× {1--0C3c)O)*+~3c(-O}=0. (A7) 

It can be shown that, for crystals in the twin orienta- 
tion, the complex conjugate of the above equation 
holds. Thus 

0 3 - {(1 - ~.~c)o)* + ~.~coo }2 

× { ( 1 - ~ 3 c ) o ~ + ~ 3 c o ~ * ) - - - 0 .  ( A S )  

The same relations can be shown to hold for ch and 
hh layers also. For a crystal simultaneously containing 
h or hc faults (which arise from twinning operations, 
Table 2), some parts of the crystal are in the normal 
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orientation and others in the twin orientation. A gen- 
eral equation covering this situation is obtained by 
multiplying equations (A7) and (AS) giving on sim- 
plification 

06 -Jr- (1 -- 30~3c)Q 3 AI- (1 -- 6~hh¢-- 30~3c) ----- 0 

for e's ,~ 1 (A9) 

where terms with squares and higher powers of the 
fault probabilities as also their cross products have 
been omitted. 
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The kinematical theory of X-ray diffraction by hhcc crystals with stacking faults is developed. The 
intensity distribution in reciprocal space is derived as a function of seven parameters which represent 
four growth and three deformation fault probabilities. Only reflexions with H - K S  3N, N an integer, 
are affected by faulting and exhibit generally changes in integrated intensity, profile peak shift, broadening 
and asymmetry. It is shown that eleven independent combinations of the seven fault probabilities can 
be evaluated from the measured profile characteristics. 

Introduction 

Extensive work has been performed on the derivation 
of X-ray diffraction effects of faulting in close-packed 
structures with ranges of influence equal to 2 and 3 
(Warren, 1959; Anantharaman, Rama Rao & Lele, 
1972). Three structures with a range of influence equal 
to 4 are possible. Diffraction effects of growth and de- 
formation faults for two of these, namely hcc and hhc 
structures, have been treated in earlier papers (Lele, 
1974a, b) while Gevers (1954) has given a general 
treatment for growth faults in crystals of this type. In 
the present paper we shall consider the third structure, 
namely hhce, containing growth and deformation faults. 

The 12-1ayered hhcc structure can be considered as 
a layer structure produced by the regular stacking of 
close-packed layers in the sequence ABA CBCBA CA CB, 
A where the letters A, B and C denote the three possible 
positions of the close-packed layers and the comma 
marks the completion of the repeat period. The geo- 
metrical structure factors for different H, K, L are given 
in Table 1. The possible growth and deformation 
faults along with a different notation due to Nabarro 
(1967), virtual processes for their formation and 
stacking sequences containing the faults (indicated by 
vertical bar) are given in Table 2. The following cal- 
culations have been made under assumptions usual in 
this type of work (see, e.g., Prasad & Lele, 1971). 

Diffract ion from faulted crystals  

Following Warren (1959), the diffracted intensity is 
given by 

I(h3)= ~ ,2 ~ (exp (iOta)) exp (2rcimh3/12) (1) 
m 

where 
~m = (2n/3) ( H -  K)qm (2) 

qm being a stochastic variate equal to 0, 1 or 2 respec- 
tively according as the m layer is A, B or C when the 
origin layer is A. Cyclic permutation yields the values 
of qm for B and C layers at the origin. Further, 

( e x p  ( i ~ m ) ) = C Q  m (3) 

where 0 is a solution of the so-called characteristic 
equation and C can be obtained from the initial condi- 
tions. The characteristic equation for growth faults has 
been obtained by Gevers (1954, equation 12) while 
that for deformation faults is derived in the Appendix. 
Combining these two equations, we have finally 

0 8 .q_ O~CO 7 .3t- O~hhcO 5 .Jr_ (1 -- ~ -- C~C-- O~hhc-- O~¢h-- 30~4h 

-- 60CZhc)O 4 -- ~ZcO 3 --  O~**cO "q- (1 - 2o~h - 2o~ - 20Chh~ 

-- 2a¢~h-- 30C4h -- 60~2hc-- 30~4c) = 0 for ~'S ,~ 1 (4) 

where c~x is the probability of the occurrence of faults 
of type x (Table 2). For convenience, the relationship 


